Dantzig Wolfe Decomposition

Operations Research

Anthony Papavasiliou

1/63



Block Structure of Primal
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L-Shaped method: ignore constraints of future stages
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Block Structure of Dual
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Dantzig-Wolfe decomposition: ignore variables
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The Problem

Z* =minc] xy + ¢ x

st Aixy +Acxo=b

B1X1 = d1
Boxo = do
X1,X2 >0

@ x; e R, x, € R™
@ beR" dy e R™, db € R™
@ Ai1xqy + Aoxo = b are complicating/coupling constraints

Note: This will be the form of the dual of the 2-stage stochastic
program (see slide 3)



Minkowski’'s Representation Theorem

Every polyhedron P can be represented in the form

P:{xeR”:x:Zijj—l—Zurw’,
jed reR

S ¥=12eR perlly
jed
where
@ {x/,j € J} are the extreme points of P
@ {w',r € R} are the extreme rays of P
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Graphical lllustration of Minkowski’s Representation
Theorem

@ x', x?, x3: extreme points
o w' w?: extreme rays
@ x= X 2+(1 -3 +unw?,0<A<1, >0
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The Feasible Region of the Subproblems

We represent Bix; = d; as

SN ST wl N > 0,0 > 0,3 N =1
JEJ rehRy JEJ4
and Boxo = db as

ST, Y phwh X, > 0,05 >0, X, =1
j€J2 reRy j€J
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Transform the full master problem using
® X1 = ZjeJ1 )‘j% X{ + Zrel% py wy
© Xo = Yjey, MXh+ Yrep, 135
For example,
Aixy +Asxo=b
becomes

JIS) reR; jed reR,
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The Full Master Problem

Applying Minkowski’s representation theorem we obtain:

i [ AT r AT " J ATy r ATl
z=min> Nelxi+ > pielwi +) Nelxh+ > phewg

je reRy jed reR,
SONAK DT AW+ NAx) + > ppAewg = b, ()
JIS) reR; jE reR,
SN =1,(t)
J€Js
SNy =1,(k)
jed

Noo X il >0
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Thinking About the New Formulation

@ This problem is equivalent to the original problem

@ The decision variables are the weights of the extreme
points (X, \,) and weights of the extreme rays (], 1)

@ The number of decision variables can be enormous (trick:
we will ignore most of them)

@ The number of constraints is smaller (we got rid of
Bixy = dj, Boxo = db)
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Columns in the New Formulation

Constraint matrix in the new formulation:

A1 X{ AgXé
M| 1 [+ M| o
jed 0 jede 1
A1 W1r A2 W2r b
+3 w0 |+ | o =11
reR; 0 reRs 0 1

Certificate of optimality: given a basic feasible solution, all
variables have non-negative reduced costs
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Recall Reduced Costs

Consider a linear program in standard form
minc’x
s.t. Ax = b, (m)
x>0

Given a basis B, when is it optimal?
@ B 'b>0
Q CE —7TA>0

where cg correspond to coefficients of basic variables
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Reduced Costs

Given a basic feasible solution, criterion for new variable to
enter is negative reduced cost

o Reduced cost of X:

A1X{
clx] - [ 4ot 1| = (T —xTA)X — ¢,
0
@ Reduced cost of x]:
A1X{
ol wi — [ Ty b } 0 | =(c] —7TA)X
0

o Similarly for X, 5
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|dea of the Algorithm: Subproblems

ldea: instead of looking at reduced cost of every variable X,
)\’2, ©y, s (there is an enormous number) we can solve the
following problems

zy =min(c{ — T A1)x

s.t. B1X1 = d1

Xq > 0

zo =min(c] — 77 Az)xe
s.t. BQXZ = d2

Xo > 0
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Three Possibilities

Given the solution of subproblem 1
@ Optimal cost is —co
o Simplex output: extreme ray w! with (¢] — 7" Aj)wj < 0
e Conclusion: reduced cost of 1 is negative
e Action: include pf in master problem with column

A1 W1r
0
0

@ Optimal cost finite, less then t;
o Simplex output: extreme point x| with (¢] — =7 A)x, < t;
e Conclusion: reduced cost of X is negative
e Action: include ¥, in master problem with column
A1X{
1
0
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© Optimal cost is finite, no less than t
e Conclusion: (¢] — T Aq )x{ > t; for all extreme points X{,
(¢ —nTAy)w] > 0 for all extreme rays w;j
e Action: terminate, we have an optimal basis

Same idea applies to subproblem 2
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Idea of the Algorithm: Master

Idea: instead of solving full master for all variables, solve
restricted master problem for ‘worthwhile’ subset of variables
-:/1 CJ1,:/2 C Jo, :Ef1 C Ry, ﬁfg C R

z=min> Nelxi+ > phelwi+ Nelxh+ > phcwg

j€J1 f€:‘~q1 je:lg I’Gﬁz
j i r r j i r r
SONAX YT AW+ NoAoxh + Y ppAcws = b
j€:/~| f€ﬁ1 jer fEﬁz
YIRS SR
j€:/~| ].632

Ny Xo, i, g > 0

A
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Dantzig-Wolfe Decomposition Algorithm

@ Solve restricted master with initial basic feasible solution,
store 7, t1, b

@ Solve subproblems 1 and 2. If (¢] — 7T Ay)x > t; and
(c] — 7T Ag)x > t, terminate with optimal solution:

X1 = Z/\’;x{—i— ZMQW{

je:h f'E:‘Nq1

_ J i rol

X = ) MApXot D ppws
jedo reR,

© If subproblem i is unbounded, add p} to the master

© If subproblem i has bounded optimal cost less than t;, add
X to the master

© Generate column associated with entering variable, solve
master, store 7, t1, &, and go to step 2
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Applicability of the Method

Analysis generalizes to multiple subproblems:

minc! xy + ¢ xo 4+ -+ ¢f xk
st Aixy +Acxo+---+Aixk = b
BiXi:di,i:1,...,K

X17X27"'7XKZO

Approach applies for K = 1, apply when subproblem has
special structure

minc’ x
st. Ax=>b
Bx=d
x>0
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Dantzig-Wolfe Bounds

Denote:
@ Zz;: optimal objective function value of subproblem i,
i=1,...,K
@ z*: optimal objective function value of problem
@ z: optimal objective function value of restricted master

@ {;: dual optimal multiplier of > /\f =1 in restricted

jed;
master
We get bounds at each iteration
@ Upper bound:

z>Zz"

@ Lower bound:
Z+ Z - tl =
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Proof of Upper Bound

The solution of the restricted master problem is a feasible
solution to the original problem
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Proof of Lower Bound (K =2

Consider the dual of the master problem:

maxw' b+t + b

st A+t <clxljedi, (V)
rTAywl < clwi re Ry, (1})

wT Aoxh + o < I xj € o, (M)

mT Apwh < ¢y wh,r € Ry, (1)
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@ Note that if z; is finite

21 <ol x| — 7T Aix), V) € J;
clw) —xTAjw] >0,vr e Ry
@ Same observation holds true for z finite

@ Conclusion: (m, 21, 2p) is feasible for above problem

@ Weak duality:

Z*ZTFTb—i-Z-] +22:Z—|-(Z1 —t1)+(22—t2)
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Example 1

min —4x; — Xo — 6X3

s.t. 3x1 +2Xo +4x3 =17
1<x <2

1<x<2

1§X3§2

Divide constraints as follows:

@ Represent P = {x € R®|1 < x; < 2} by its extreme points
X/

@ Complicating constraints Ax = b, A= [ 3 2 4 } b=17
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First lteration: Master

e Initialization: pick extreme points x' = (2,2,2),
x2 = (1,1, 2) with restricted master problem basic
variables A1, \?

Basis matrix:

B_[3-2+2-2+4.2 3.1+2.1+4.2]_[18 13]
B 1 1 1

@ Restricted master:
min —22\" — 17)2
s.t. 18\ +13)\2 =17, (n)
AT+ A2 =1,(1)
A2 >0
@ Optimal solution ' = 0.8, A2 = 0.2, optimal multipliers:
r=-1,t=-4
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First Iteration: Subproblem

@ Objective function coefficients: ¢” — 7T A =
[—4 1 —6}—(—1)[3 > 4]:[—1 1 —2}
@ Subproblem:
min —xq + X2 — 2X3
S 1<x<21<Xx<21<x3<2

@ Optimal solution: x3 = (2,1, 2), objective function value -5
islessthant = —4

@ Introduction of A3 to master with coefficients
[3-2+2-1 +4.2] B [ 16]
1 ]
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Second lteration: Master

@ Restricted master problem:

min —22)\" — 17)2 — 213
s.t. 18X +13)2 + 163 = 17, (n)
MEX2 L8 =1,(0)
A2 a3>0
@ Optimal solution ' = 0.5, A3 = 0.5, optimal multipliers:
m=-05t=-13
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Second lteration: Subproblem

@ Subproblem:

min —2.5x; — 4x3
st 1<x<2,1<Xx%<21 §X3§2

@ Optimal solution: x' = (2,2, 2), objective function value
-18isequalto t = —13

@ Optimal solution is
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Graphical lllustration of Example 1

x2=(1,1,2) (1,2 2)

1 =(2,2,2)

Xq
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Explanation of Graphical lllustration

@ Cubeis P

@ Shaded triangle is intersection of P with
3X1 +2x0 +4x5 =17

@ Point A: result of first basis (A\' = 0.8, A% = 0.2)

@ x3: extreme point brought into master after completion of
first iteration

@ Point B: result of second basis (A = 0.5, A3 = 0.5)
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Recall solutions at first iteration:

e z=-21

et=-4

@ z1=-5
Bounds:

21> 2" > 21 4 (=5) — (—4) = —22

Indeed, z* = —-21.5
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Example 2

min —5xq + Xo

s.t.x1 <8

Xy —Xo < 4

2xy — X0 <10

X1,Xo >0
Introduce slack variable x3:

min —5xq + Xo

St. Xy +x3=38

Xy —Xo < 4

2xy — Xo <10

X1,X2,X3 > 0
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Decomposition of Example 2

@ Treat x; + x3 = 8 as a coupling constraint

@ Py ={(x1,X2)|X1 — X2 < 4,2x1 — X < 10, X7, X2 > 0}
e Extreme points: x{ = (6,2), x2 = (4,0), x3 = (0,0)
e Extreme rays: w{ = (1,2), w? = (0,1)

® Py = {X3|x3 > 0}
e Unique extreme ray: w) = 1
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First lteration: Master

e Initialization: pick extreme point x{ = (6,2), extreme ray
w) =1
@ Restricted master:
min —28\]
s.t. 6A] + ub =8, ()
A =1,(t)
A,z >0

@ Optimal solution A} = 1, u} = 2, optimal multipliers: = = 0,
t = 28
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First Iteration: First Subproblem

@ Objective function coefficients:
cf—ﬂTA1:[—5 1}—(0)[1 o]:[—5 1}
@ Subproblem:

min —5xq1 + Xo
st xy —x0 <4,2x1 —x0 <10

X1,X2 >0

@ Optimal solution: w; = (1,2), objective function value —oco
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Second lteration: Master

@ Restricted master problem:

min —28\] — 3]

s.t. 6A] + pf + p = 8,(7)
Al =1,(t)

A pipd >0

@ Optimal solution \! =1, ul =2, u} =0, optimal
multipliers: 7 = -3, t = —10
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Second lteration: Subproblems

@ Subproblem:

min —2xq + X
st xy —x0 <4,2x1 — x0 <10

X1,%2 >0

@ Optimal solution: x = (8, 6), objective function value -10 is
equalto z; = —10

@ Reduced cost of u; is 3 (non-negative)
@ Optimal solution is

x11+2w11:[2]
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Graphical lllustration of Example 2

X2

W1l\

X

—w

142
° X/, Xk

, x3: extreme points of P
o w/,w?: extreme rays of P;
@ Algorithm starts at (x1, x2) = (6, 2), reaches optimal

solution (x1, x2) = (8, 6) after one iteration
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Extended Form 2-Stage Stochastic Program

Primal problem: appropriate for L-shaped method

K
minc’x + > kgl v
k=1

s.t. Ax=b,(p)
Tix + Wyk = hy, (k)
X, Yk > 0

Dual problem: appropriate for Dantzig-Wolfe decomposition

K
max pr + Z TI',Z-hk
k=1

K
st.pT A+ mi T <c’,(x)
k=1
W < peayd, (Vi)
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Dantzig-Wolfe on the Dual Problem

Consider feasible region of

W ... 0
[ﬂ w;] 0 ... 0 g[q( qﬂ
o --- W

Denote 7/, j € J as extreme points, w’, r € R as extreme rays

pi Ty p1 h

E=(" ¢ lg=)"| 1+ |, (1)
Pk Tk Pk hk
pi T p1h

D, = (w")" : ,dr = (w)T : (2)

Pk Tk Pk hk
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Dantzig-Wolfe Full Master Problem

z* = maXprJrZ)\fejJrZu’d,

jed reR
st.pT A+ NE+) u'Dr<c’,(x)
jed rerR
d N =1,00)
jed

N, >0

45/63



The dual of the Dantzig-Wolfe full master is

minc x4+ 6

st. Ax=>b
Ex+0>e¢,jecd
Dx>d,reR
x>0

This is the L-shaped full master problem
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Reduced Costs

We want to bring in
@ V for which ej— Ejx — 6 >0
@ u for whichd, — D;x >0
In order to maximize reduced cost, we need to maximize

K K

> ) Tk = (m) T Tex

k=1 k=1

where 7, € RMk
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Dantzig-Wolfe Second-Stage Subproblems

zx = maxn] (hx — Tkx)

s.t. W[W < Gk, (k)

The duals of the Dantzig-Wolfe subproblems are the primal
L-shaped subproblems:

min g/ yx
s.t. Wyk = hk — TkX
Yk>0
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Summary: Dantzig-Wolfe Subproblems

Master (where J ¢ J, R c R)

14| |R|
maxz:prJrZ/\jejJrZurdr (3)
j=1 r=1
o Ll
st.pTA+Y NE+) u'D <c’ (4)
j=1 r=1
o '
dDN=1N¥>04">0 (5)
j=1
Scenario subproblems:
max ' (hx — Tkx") (6)

st.a'W<q' (7)
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Algorithm

Step 0. |J|=|Rl=v=0
Step 1. v = v + 1 and solve (3) - (5). Let the solution be
(p¥, AV, 1) with dual solution (x", 6")
Step 2. Fork=1,...,K, solve (6) - (7)
o If extreme ray w" is found, set d|,~:,|Jr1 = (WV)Thk,
D1 = (W) Tk, |R| = |R| + 1 and return to step 1
@ If all subproblems are solvable, let

K K
Eger = 2 Pe(mi) T @30 = > (i) i
k=1 k=1

o Ifey 4 — EjgqX" — 0 <0, then stop with (p*, A", u*) and
(xV,8") optimal

o If ey, — Eyx" —0">0,set|J| =|J+1and return to
step 1
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Dantzig-Wolfe Bounds Revisited

@ Lower bound: z < z*

@ Upper bound: z* < ¢7x + SK_, pkzk

@ Dantzig-Wolfe bounds are the same as the L-shaped
bounds
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Dantzig-Wolfe Versus L-Shaped Method

@ Both algorithms go through the same steps

@ Difference: we solve the dual problems instead of the
primal problems

A
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Integer Programming Formulation

(IP) : min{c"x : x € X}
X=YnZ

Y ={Dx >d}
Z={Bx>b}nz"

Structural assumption: OPT(Z,c) : {minc’x : x € Z} can be
solved rapidly in practice
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Application of Dantzig-Wolfe on Integer Program

Idea: Apply Dantzig-Wolfe to (/P) using Minkowski
Representation Theorem to represent
conv(Z) = conv({Bx > b} NZ")

conv(Z) is the gray area
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Dantzig-Wolfe Reformulation

(DWe) : 2P = min) “(cTx)V
A>0

- jed
st. > (DX)N >d
jed
dN=1) xNez"
jed jed

where
@ x! is the set of extreme points of conv(Z2),
@ conv(Z) is the convex hull of Z
@ Jis the set of extreme points of conv(Z)
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Restricted Master Linear Program

@ The linear relaxation of (DWec) is called the Master Linear
Program (MLP)
@ When we only consider a subset J C J of the extreme

points of conv(Z) we get the Restricted Master Linear
Program (RMLP)

(RMLP) : zPMLP — miny " (cTx/)V
A>0 4 J
Jj€

st. > (DX)¥ > d,(r)
jed

> N =1,(0)

jed
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@ The reduced cost associated to M is ¢'x/ — 7" Dx/ — o
@ Important: z = min;_(c"x — =" Dx) =
Minyez(c” — 7" D)x = Ming,>p xezn (¢ — " D)x is an
easy integer program

Q@ zAMP — .

IGJ(CTXj))\j is an upper bound on zy; p and
(MLP) is solved when z— o =0

© If solution X of (RMLP) is integer, z™- is an upper bound

for (IP)
A
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Column Generation Algorithm for (MLP)

@ Initialize primal and dual bounds UB = 400, LB = —c0

Q lteration ¢

e Solve (RMLP) over x/,j € Jt, record primal solution A! and
dual solution (!, ot)

e Solve pricing problem
(SPY) : zt = min{(cT — (x!)TD)x : x € Z}, let x! be an
optimal solution. If z! — ¢! = 0 set UB = zF”M-P and stop
with optimal solution to (MLP). Else, add x! to J! in
(RMLP).

e Compute lower bound (7!)"d + z!. Update
LB = max{LB, (r")Td + z'}. If LB = UB, stop with optimal
solution to (MLP)

© Increment t, return to step 2
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Relationship to Lagrange Relaxation

Relaxing ‘difficult’ constraints Dx > d, while keeping the
remaining constraints Z = {x € Z] : Bx > b}, we get

@ the dual function
g(n) = mXin{ch +77(d—Dx):Bx>b,xecZl} (8)
@ the dual bound

: T T
Z)p = max = maxmin{c' x d — Dx
Lp = ma> g(m) na er{ + 7' )}
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Reformulation of Dual Bound

zip= maxmln{c x +77(d — Dx/)}
>0 jed

where
@ x! is the set of extreme points of conv(Z2),
@ conv(Z) is the convex hull of Z
@ Jis the set of extreme points of conv(Z)

Equivalently:

Zip = maX7TTd+O'

7>0,0

st.o<c'x—x"Dx, je J (V)
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Taking the dual:

_ Y
Zip= min (c Tx )A
)\/>O/EJZ

st. Y (DX > d, ()
jed

Y N =1,(0)

jed
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Relationship Between Lagrange Dual Bound and LP

Relaxation of Dantzig-Wolfe Reformulation

@ Observe: The linear program (9) - (11) is the master linear
program (MLP) of Dantzig-Wolfe
@ Conclusion: Solving the Lagrange Relaxation (9) - (11) will
give the same bound as solving (MLP) using
Dantzig-Wolfe decomposition
A
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